您的位置 >> 新闻资讯 >> 行业新闻
1、注塑模具的热平衡控制注塑机和模具的热传导是生产注塑件的关键。模具内部,由塑料(如热塑性塑料)带来的热量通过热辐射传递给材料和模具的钢材,通过对流传递给导热流体。另外,热量通过热辐射被传递到大气和模架。被导热流体吸收的热量由模温机来带走。模具的热平衡可以被描述为:P=Pm-Ps。式中P为模温机带走的热量;Pm为塑料引入的热量;Ps为模具散发到大气的热量。
2、控制模具温度的目的和模具温度对注塑件的影响注塑工艺中,控制模具温度的主要目的一是将模具加热到工作温度,二是保持模具温度恒定在工作温度。以上两点做的成功的话,可以把循环时间最优化,进而保证注塑件稳定的高质量。模具温度会影响表面质量,流动性,收缩率,注塑周期以及变形等几方面。模具温度过高或不足对不同的材料会带来不同的影响。对热塑性塑料而言,模具温度高一点通常会改善表面质量和流动性,但会延长冷却时间和注塑周期。模具温度低一点会降低在模具内的收缩,但会增加脱模后注塑件的收缩率。而对热固性塑料来说,高一点的模具温度通常会减少循环时间,且时间由零件冷却所需时间决定。此外,在塑胶的加工中,高一点的模具温度还会减少塑化时间,减少循环次数。
3、有效控制模具温度的预备条件温度控制系统由模具、模温机、导热流体三部分组成。为了确保热量能加给模具或移走,系统各部分必须满足以下条件:首先是在模具内部,冷却通道的表面积必须足够大,流道直径要匹配泵的能力(泵的压力)。型腔中的温度分布对零件变形和内在压力有很大的影响。合理设置冷却通道可以降低内在压力,从而提高了注塑件的质量。它还可以缩短循环时间,降低产品成本。其次是模温机必须能够使导热流体的温度恒定在1℃-3℃的范围内,具体根据注塑件质量要求来定。第三是导热流体必须具有良好的热传导能力,最重要的是,它要能在短时间内导入或导出大量的热量。从热力学的角度来看,水明显比油好。
4、工作原理模温机由水箱、加热冷却系统、动力传输系统、液位控制系统以及温度传感器、注入口等器件组成。通常情况下,动力传输系统中的泵使热流体从装有内置加热器和冷却器的水箱中到达模具,再从模具回到水箱;温度传感器测量热流体的温度并把数据传送到控制部分的控制器;控制器调节热流体的温度,从而间接调节模具的温度。如果模温机在生产中,模具的温度超过控制器的设定值,控制器就会打开电磁阀接通进水管,直到热流液的温度,即模具的温度回到设定值。如果模具温度低于设定值,控制器就会打开加热器。
5、模温机的种类是根据使用的导热流体(水或导热油)来划分的。用运水式模温机通常最大出口温度95℃。用运油式模温机用于工作温度≥150℃的场合。通常情况下,带有开口水箱加热的模温机适于用水温机或油温机,最大出口温度为90℃至150℃,这种模温机的主要特点是设计简单,价格经济。在这种机器的基础上又衍生了一种使用高温水温机,其可允许的出口温度为160℃或更高,由于在温度高于90℃的时候,水的热传导性比同温度下的油好很多,因此这种机器有着突出的高温工作能力。除次之外,还有一种强制流动的模温机,出于安全因素,这种模温机设计工作温度为150℃以上,使用导热油。为了防止模温机加热器里的油过热,该机使用了强制流动泵送系统,且加热器由一定数量的的管子堆叠组成,管子里有装有翅片的加热元件用于导流。
6、控制模具内的温度各点不均匀,也和注射周期中的时间点有关。在注射以后模腔的温度升到最高,这时热的熔体碰到模腔的冷壁,当零件移走后温度降到最低。模温机的作用就是保持温度恒定在θ2min和θ2max之间,也就是说防止温度差△θw在生产过程或间隙上下波动。以下的几种控制方法适用于控制模具的温度: 控制流体温度是最常用的方法,且控制精度可以满足大多数情况要求。使用这种控制方法,显示在控制器的温度和模具温度并不一致;模具的温度波动相当大,因为影响模具的热因素没有直接测量和补偿 这些因素包括注射周期的改变,注射速度,熔化温度和室温。其次就是模具温度的直接控制。该方法是在模具内部装温度传感器,这在模具温度控制精度要求比较高的情况下才会采用。模具温度控制的主要特点包括:控制器设定的温度与模具温度一致;影响模具的热因素可以直接测量和补偿。通常情况下,模具温度的稳定性比通过控制流体温度更好。此外,模具温度控制在生产过程控制中的重复性较好。第三是联合控制。联合控制是上述方法的综合,它能同时控制流体和模具的温度。在联合控制中,温度传感器在模具中的位置极其重要,放置温度传感器时,必须考虑形状、结构及冷却通道的位置。另外,温度传感器应被放置在对注塑件质量起决定性作用的地方。连接一个或多个模温机到注塑机控制器上有很多途径。从操作性、可靠性和抗干扰考虑最好使用数字接口,如RS 485。在控制单元和注塑机之间可以通过软件传递信息。模温机还可以自动控制。
7、模温机的配置与使用模温机的配置应根据加工的材料,模具的重量,要求的预热时间和生产率kg/h来综合判定。当使用导热油时,操作者必须遵守这样的安全规定:不要把模温机放在靠近热源火炉的地方;接头使用有锥度的防漏和具有耐温耐压的软管或硬管;定期检查温度控制回路模温机,接头和模具有无泄露,功能是否正常;定期更换导热油;应当选用人工合成油,热稳定性好, 何谓薄壁?
简单的看法,当壁厚小于1mm时称为薄壁。更全面地,薄壁的定义与流程/壁厚比、塑料的粘度及传热系数均有关系。
从模具的主流道到成品最远一点的流程L,除以成品的壁厚t,称为流程/壁厚比。当L/t>150时,称之为薄壁。如流程的厚薄不一致,可分段计算。
流程/壁厚比 PP的粘度因数是1。一次即弃饭盒的流程135mm,壁厚0.45mm,流程/壁厚比=300。PC的粘度因数是2。手机电池外壳的流程38mm,t=0.25mm,流程/壁厚比=152。乘上粘度因数是304,与饭盒的相若。
一般塑料的导热不良。为了增加散热效果或达到电磁波兼容性,一些外壳会采用高导热性的塑料。金属粉末亦属于高导热性的。 上式是注塑成品的冷却时间公式,其中t=壁厚,Tm=溶融温度,TW=模壁温度,T=脱模温度,α=塑料传热系数。L/t的定义要包括粘度因数及传热因数在内。
我来完善一下,什么是薄壁注塑?
简述首先为何要薄壁注塑?
塑料原料的成本通常占制品成本的一个大比数,如50-80%。薄壁有助降低这个比数。由于消费性电子设备如手机、MP3播放机、数码相机、掌上计算机的小型化及轻便化,有关的塑件设计便越来越薄。
薄壁化因具有减小产品重量及外形尺寸、便于集成设计及装配、缩短生产周期、节约材料和降低成本等优点成为塑料消费行业追求的目标,已成为塑料成型行业中新的研究热点。
工艺薄壁制品的设计思想和方法更为复杂,并进一步受到成型局限及材料选择的影响。薄壁制品要求应该具有高的冲击强度、良好的外观质量和尺寸稳定性,并能承受大的静态载荷,成型材料的流动性要好。设计过程中要重点考虑制品的刚性、抗冲击性和可制造性。
成型薄壁制品时一般需要专门设计的薄壁制品专用模具。与常规制品的标准化模具相比,薄壁制品的模具从模具结构、浇注系统、冷却系统、排气系统和脱模系统等都发生了重大变化。主要表现在以下几个方面:
(1)模具结构:为承受成型时的高压,薄壁成型模具的刚度要大、强度要高。因此模具的动、定模板及其支承板重量较大,厚度通常比传统模具的模板要厚。支撑柱要多,模具内可能要多设置内锁,以保证精确定位和良好的侧支撑,防止弯曲和偏移。另外,高速射出速度增加了模具的磨损,因此模具要采用较高硬度的工具钢,高磨损、高冲蚀区(如浇口处)硬度应大于HRC55。
(2)浇注系统:成型薄壁制品,特别是制品厚度非常小时,要使用大浇口,而且浇口应该大于壁厚。如是直浇口应设置冷料井,以减少浇口应力,协助填充,减少制品去除浇口时的损坏。为保证有足够的压力充填薄的模腔,流道系统中应尽可能减少压力降。为此,流道设计要比传统的大一些,同时要限制熔体的驻留时间,以防止树脂降解劣化。当是一模多腔时,浇注系统的平衡性要求远高于常规模具的要求。值得注意的是薄壁制品模具的浇注系统中还引入了两项先进技术,即热流道技术和顺序阀式浇口(SVG)技术。
(3)冷却系统:薄壁制品不像传统壁厚件那样可以承受较大的因传热不均而产生的残余应力。为保证制品的尺寸稳定性,把收缩和翘曲控制在可以接受的范围内,就必须加强模具的冷却,确保冷却均衡。较好的冷却措施有在型芯及模腔模块内采用不闭合冷却线,加大冷却长度,均可增强冷却效果,必要的地方加入高传导率金属镶块,以加快热传导。
(4)排气系统:薄壁注塑成型模具一般需要有良好的排气性,最好可以进行抽真空操作。由于填充时间短,注射速度高,模具的充分排气尤其是流动前沿聚集区的充分排气非常重要,以防困气引燃。气体通常通过型芯、顶杆、加强筋、螺柱及分型面等处排出。流道的末端也要充分排气。日本Sumitomo公司用多孔工具钢做小嵌件来解决小件制品的排气问题。
(5)脱模系统:因为薄壁制品的壁和筋都很薄,非常容易损坏,而且沿厚度方向收缩很小,使得加强筋和其他小结构很容易粘合,同时高保压压力使收缩更小。为避免顶穿和粘模,薄壁注塑成型应使用比常规注塑成型数量更多、尺寸更大的顶出销。
常规的注塑机很难在薄壁塑件注塑成型中有用武之地。比如薄壁注塑成型的填充时间很短,很多填充时间不足0.5s,在这样短的时间不可能遵循速度曲线或截断压力,因此必须使用高解析度的微处理器来控制注塑机;在薄壁制品的整个注塑成型过程中,应同时各自独立地控制压力和速度,常规注塑机的充填阶段用速度控制,保压阶段再转为压力控制的方法已不适用。所以机械设备制造商与研究机构共同合作努力,研制出了专用的注射设备。如台湾中精机公司的VS-100薄壁注塑机、德国Dr.Boy公司开发的Boy型系列注塑机以及Battenfeld、Arburg和JSW等著名注塑机生产厂商开发的专用注塑机。
薄壁注塑成型材料流动性要好,必须拥有大的流动长度。还有具有高的冲击强度,高热变形温度,良好的尺寸稳定性。另外,还要考察材料的耐热性、阻燃性、机械装配性及外观质量等等。目前,薄壁注塑成型广为应用的材料有聚碳酸酯(PC)、丙烯腈—丁二烯—苯乙烯(ABS)及PC/ABS共混物等。
技术常规注塑的填充过程和冷却过程是交织在一起的,当聚合物熔体流动时,熔体前沿遇到相对温度较低的型芯表面或型腔壁,就会在其表面形成一层冷凝层,熔体在冷凝层内继续向前流动,冷凝层厚度对聚合物的流动有着显著地影响。
需要对薄壁注塑成型中的冷凝层的性质进行更深入、更全面的研究。因此有关薄壁注塑成型的数值模拟还需在以下几方面做很多工作。
(1)更深入全面研究薄壁注塑成型理论,尤其是冷凝层的性质,以便提出更加合理的假设条件和边界条件。由上述分析可知,在薄壁注塑成型过程中,其很多条件和常规注塑成型有很大不同。模拟时,熔体流动数学模型的许多假设和边界条件在薄壁注塑成型中需要进行适当的调整。
(2)确定在薄壁注塑成型中增加的因素,并正确地考虑这些因素。一些在常规注塑中可以忽略的因素,往往会对薄壁成型熔体流动产生较大的影响。比如,在薄壁注塑中粘度对压力有明显的依赖性,而在常规注塑成型中却没有;熔接线强度对塑件性能影响很大,尤其是薄壁塑件,熔接线强度与温度和压力有关,但常规数值模拟时没有考虑压力的影响;材料的比热、传热系数和压力损失等。现有的商品化数值模拟软件由于忽略了这些影响因素,因而在预测薄壁注塑成型填充时会出现不一致的现象。
(3)应用真正的三维数值模拟。现有商品化的数值模拟软件都是使用二维、二维半要素代表三维几何图形的简化模型,没有考虑物理量在厚度方向上的变化。三维流动区域即拐角处流动、厚度变化区域、熔体前端喷泉效应在现有的数值模拟软件中还不能表示,而它们在薄壁注塑成型中起重要作用。
(4)注塑成型全过程模拟。目前的模拟软件主要包括填充、流动、保压、冷却、和翘曲分析等模块,各模块的开发是基于各自独立的数学模型,忽略了相互之间的影响。但是,从注塑成型工艺过程来看,塑料熔体的充模流动、保压和冷却等是交织在一起并相互影响的,这在薄壁注塑成型中尤为明显。因此,充模流动、保压与冷却分析和翘曲模块必须有机地结合起来,进行耦合分析,才能综合反映实际的注塑成型
结焦倾向小。在模温机的使用上,选择合适的导热流体极为关键。用水作导热流体经济,干净,使用简便,一旦温度控制回路如软管联结器泄漏,流出来的水可直接排放到下水道。但用水作导热流体水也有缺点:水的沸点低;根据水的组成,可能会腐蚀和结垢,引起压力损失增大和模具和流体之间的热交换效率下降等等。在使用水作为导热流体时,应考虑以下预防措施:用防腐蚀剂预先处理温度控制回路;进水口前使用过滤器;定期用除锈药剂清洗水温机和模具。用导热油时没有水的缺点。油的沸点高,它们可以用于温度高于300℃甚至更高的情况,但导热油的热量传递系数只有水的1/3,因此油温机在注塑方面没有水温机用的广泛。